
Multithreaded parallel Python through 
OpenMP support in Numba

Tim Mattson (University of Bristol and Merly.ai … but mostly retired) 
tim@timmattson.com

Acknowledgement:  The rest of the PyOMP team …. 
Giorgis Georgakoudis (LLNL), Todd Anderson (bodo.ai), and Stuart Archibald (anaconda)



This talk in one slide
• Given that …

– Tasks are NOT best for everything. 

– Fragmenting the space of parallel APIs is bad.   

– OpenMP is the most popular parallel programing model.  

– OpenMP covers the key patterns of task parallel programming. 
 

 
– One programming model mapping onto multiple programing languages is key.   

– PyOMP is cool! 

• Which API should applications developers converge around?   
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Warning: This talk is 
part of a panel.  To 

foster discussion, my 
views are presented 
aggressively without 

nuance.  

API: Application Programming Interface



No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running? 

On a CPU

On an Accelerator

Ru
n 

Ti
m

e

CPU only

Offload

Heterogeneous 
Computing

Writing applications based on Heterogenous 
Computing is much easier if one programming 
environment covers all on-node programming 

architectures AND algorithms



In the early days of parallel computing, we were obsessed with 
finding the “right” parallel programming environment
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Having such a huge set of options did tremendous damage.

Supporting programming models is a zero-sum game.  Time spent working on a 
new model means time NOT spent getting established to work well.

This was a headache to application developers who need a small number of 
models that just work … everywhere and supported by their systems vendors

As we came out of the 1990’s sanity ruled and the HPC applications community 
converged around two programming environments …. MPI and OpenMP

The lives of HPC applications developers improved tremendously!!!!

I fear a new generation of parallel programmers have forgotten this lesson.  
Can we please NOT screw things up again?



OpenMP is the 
most popular 

parallel 
programing 
model in use 

today

66

Note: since we did not collect files with .cu or .cuf suffices, 
we undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023

Quantifying OpenMP: Statistical insights into usage and adoption, 
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002

In a dataset (HPCorpus) of all 
C/C++/Fortan github repositories 
from 2013-2023, OpenMP was 
found to be the most popular 
parallel programming  model



Top 50 OpenMP Directives/clauses for C

Indicates items from Common Core

Number of occurrences in HPCorpus (C)

OpenMP Common Core ver. 2.0?

What are people 
actually using from 

OpenMP
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With the HPCorpus* dataset, we 
finally have hard-data to analyze 
what “should” be in the common 
core.

This data was constructed by 
summing up counts for different 
directives and clauses across time 
from 2013 to the middle of 2023.

HPCorpus … a data set created by scraping ”all” HPC 
codes from github written in C, C++ and Fortran.

Quantifying OpenMP: Statistical Insights into Usage and Adoption, 
Tal Kadosh, Niranjan Hasabnis, Tim Mattson, Yuval Pinter, and 
Gal Oren, IEEE HPEC 2023

OpenMP components for GPUs

OpenMP SIMD  components

26/50

13/50
8/50

Traditional multithreading dominates

OpenMP tasking  components 4/50

Tasking is lightly used …. It doesn’t even 
appear in the top-50 list until item 20.

So, I can’t be too hard on people who do not 
recognize OpenMP as a tasking API.



i/edag/tree

Comparing 
tasking systems*

*A taxonomy of task-based parallel programming technologies for High Performance Computing, Peter Thoman, et. al., J.. Supercomput (2018) https://doi.org/10.1007/s11227-018-2238-4

OpenMP is a general-
purpose task-based 
programming model.

OpenMP supports the 
full range of task-based 
algorithms other than 
those that depend on
• Distributed memory
• Task resiliency 
• Futures

… and with Tech 
Readiness level 9, it’s 
suitable for serious 
application work.

i/e

Free agent threads in OpenMP 6.0 supports implicit worker management
OpenMP 6.0 added reusable static taskgraphs to reduce task management overhead

Recursive tasks plus taskwait supports trees.  The depend clause on task supports DAGs

OpenMP 
notes Explicit GPU programming in OpenMP is fully integrated with tasks



Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html.                            Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules.  If you only support C++, 
then you exclude the overwhelming majority of programmers

Taskflow and HPX C++
OpenCilk  C++, C
OpenMP  C++, C, Fortran, Python

https://pypl.github.io/PYPL.html


… So perhaps best way to bring parallel task-based 
computing to the masses would be to combine 

OpenMP and Python?

PyOMP: Programming GPUs with OpenMP and Python
Giorgis Georgakouis, Todd A. Anderson, Stuart Archibald, Bronis de Supinski, and Timothy G. Mattson. High Performance Python for Science at Scale workshop at SC24, 2024

PyOMP: Multithreaded Parallel Programming in Python
Timothy G. Mattson, Todd A. Anderson, Giorgis Georgakoudis,  Computing in Science and Engineering, IEEE, November/December 2021

Multithreaded parallel Python through OpenMP support in Numba 
Todd Anderson, Timothy G. Mattson, SciPy 2021. http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html



Pythonic OpenMP in three-part harmony

• Incorporated into the numba JIT compiler.  The code is JIT’ed into 
LLVM and therefore avoids the Global Interpreter Lock (GIL) and 
supports parallel computing with multiple threads.

• Numpy is the standard module used in scientific computing with 
Python.  Hence, PyOMP is optimized to with numpy arrays.

• OpenMP managed through a context manager (that is, a with 
statement).

JIT: Just In Time Compilation

*

*Opening chord progression from the opera Einstein on the Beach (Knee Play 1) by Philip Glass 



The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

PyOMP by example …
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We will understand PyOMP by considering the three fundamental design patterns of OpenMP (Loop 
parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
    step=1.0/NumSteps
    sum = 0.0
    x = 0.5
    for i in range(NumSteps):
        x+=step
        sum += 4.0/(1.0+x*x)
    pi=step*sum
    return pi



Loop Parallelism code
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    
    with openmp ("parallel for private(x) reduction(+:sum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            sum += 4.0/(1.0 + x*x)

    pi = step*sum
    return pi

pi = piFunc(100000000)

OpenMP constructs managed through an 
openmp context manager.

Pass the OpenMP directive into the 
OpenMP context manager as a string

Python’s implicit data management mapped onto OpenMP.   Default rules:
• Variables referenced outside the OpenMP construct are shared

• Variables that only appear inside a construct are private

• Python for technical applications typically based on Numpy arrays, so PyOMP 
focusses on numpy arrays as well.

OpenMP data environment clauses are supported in PyOMP



Single Program Multiple Data (SPMD)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    partialSums = np.zeros(MaxTHREADS)
    with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
         threadID = omp_get_thread_num()
         with openmp("single"):
            numThrds = omp_get_num_threads()
         localSum = 0.0
         for i in range(threadID, NumSteps, numThrds):
             x = (i+0.5)*step
             localSum = localSum + 4.0/(1.0 + x*x)
         partialSums[threadID] = localSum
    return step*np.sum(partialSums)

pi = piFunc(100000000)

Deal out loop iterations as if a deck of cards (a cyclic distribution) 
… each threads starts with the Iteration = ID, incremented by the 
number of threads, until the whole “deck” is dealt out.    



Divide and conquer (with explicit tasks)
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Solve

Split

Merge

Fork threads 
and launch the 
computation

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    startTime = omp_get_wtime()
    with openmp ("parallel"):
        with openmp ("single"):
             sum = piComp(0,NumSteps,step)

    pi = step*sum
    return step*sum

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256 
@njit
def piComp(Nstart, Nfinish, step):
    iblk = Nfinish-Nstart
    if(iblk<MIN_BLK):
        sum = 0.0
        for i in range(Nstart,Nfinish): 
            x= (i+0.5)*step
            sum += 4.0/(1.0 + x*x)
    else:
        sum1 = 0.0
        sum2 = 0.0
        with openmp ("task shared(sum1)"):
            sum1 = piComp(Nstart, Nfinish-iblk/2,step)
        with openmp ("task shared(sum2)"):
            sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
        with openmp ("taskwait"):
            sum = sum1 + sum2
    return sum



Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30  GHz. 
For the C programs we used Intel® icc compiler version 19.1.3.304 as  icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)
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Threads
PyOMP C/OpenMP

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131 

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps



PyOMP DGEMM (Mat-Mul with double precision numbers)
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from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime
 
@njit(fastmath=True)
def dgemm(iterations,order):

    # allocate and initialize arrays
    A = np.zeros((order,order))
    B = np.zeros((order,order))
    C = np.zeros((order,order))

    # Assign values to A and B such that 
    # the product matrix has a known value.
    for i in range(order):
        A[:,i] = float(i)
        B[:,i] = float(i)
 

tInit = omp_get_wtime()    
    with openmp("parallel for private(j,k)"):
          for i in range(order):
              for k in range(order):
                  for j in range(order):
                      C[i][j] += A[i][k] * B[k][j]

    dgemmTime = omp_get_wtime() - tInit
   
    # Check result
    checksum = 0.0;
    for i in range(order):
        for j in range(order):
            checksum += C[i][j];
    ref_checksum = order*order*order
    ref_checksum *= 0.25*(order-1.0)*(order-1.0)
    eps=1.e-8
    if abs((checksum - ref_checksum)/ref_checksum) < eps:
        print('Solution validates')
        nflops = 2.0*order*order*order
        print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)
    



DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.  
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order 
1000 matrices

PyOMP times 
DO NOT include 
the one-time JIT 

cost of ~2 
seconds.



Loop Parallelism code naturally maps onto the GPU
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    
    with openmp (”target teams loop private(x) reduction(+:sum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            sum += 4.0/(1.0 + x*x)

    pi = step*sum
    return pi

pi = piFunc(100000000)

OpenMP constructs managed through 
the with context manager.

Map the loop onto a 1D index space … the 
loop body defines the kernel function 



PyOMP is easy to install and use

• Conda one-line installation
           conda install -c python-for-hpc -c conda-forge pyomp

• PyPi package installation
      pip install pyomp

• Fast ways to try
– Binder: https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
– Docker: docker pull ghcr.io/python-for-hpc/pyomp:latest

Open Source code on github:               https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP


This talk in one slide
• Given that …
– Tasks are NOT best for everything. We need a single node-level programming 

model that does it all … traditional multithreading, GPU-programming, and task 
level parallelism.

– Fragmenting the space of parallel APIs is bad.  HPC is facing an existential 
challenge in the face of AI. If we make vendors  chase multiple parallel 
programming models, we in the long run damage ourselves. 

– OpenMP is the most popular parallel programing model.  

– OpenMP covers the key patterns of task parallel programming.  We lack 
futures and distributed computing, but cover the other classic task patterns.

– One programming model mapping onto multiple programing languages is 
key.  C++ is great, but there is a lot of code outside C++ in HPC.  Python will 
become the primary language of HPC!

– PyOMP is cool!  The performance you expect from OpenMP but in Python

• Which API should applications developers converge around?   
– OpenMP is the “once and future” choice for task-level parallelism.  Taskflow, HPX and Cilk are 

great research vehicles.  But to impact the real world and guide us into a tasky future, OpenMP 
is the right choice.
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Hopefully these points 
are clear and obvious.

 
And if not, I look 
forward to our 
discussions

API: Application Programming Interface



Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload
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Loop Parallelism code naturally maps onto the GPU
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from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
    step = 1.0/NumSteps
    sum = 0.0
    
    with openmp (”target teams loop private(x) reduction(+:sum)"):
        for i in range(NumSteps):
            x = (i+0.5)*step
            sum += 4.0/(1.0 + x*x)

    pi = step*sum
    return pi

pi = piFunc(100000000)

OpenMP constructs managed through 
the with context manager.

Map the loop onto a 1D index space … the 
loop body defines the kernel function 



5-point stencil: Heat diffusion problem
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# Loop over time steps

 for _ in range(nsteps):

    # solve over spatial domain for step t

    solve(n, alpha, dx, dt, u, u_tmp)

  # Array swap to get ready for next step

    u, u_tmp = u_tmp, u  

𝜕𝑢
𝜕𝑡
− 𝛼∇!𝑢 = 0

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥!

	≈
𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥!



5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                # Update the 5-point stencil.
                # Using boundary conditions on the edges of the domain.
                # Boundaries are zero because the MMS solution is zero there.
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+:       67.6 secs



Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
    """Compute the next timestep, given the current timestep"""

    # Finite difference constant multiplier
    r = alpha * dt / (dx ** 2)
    r2 = 1 - 4 * r
    with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
        # Loop over the nxn grid
        for i in range(n):
            for j in range(n):
                u_tmp[j, i] = (r2 * u[j, i] +
                               (u[j, i+1] if i < n-1 else 0.0) +
                               (u[j, i-1] if i > 0   else 0.0) +
                               (u[j+1, i] if j < n-1 else 0.0) +
                               (u[j-1, i] if j > 0 else 0.0))
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25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+:       67.6 secs
• Nvidia V100:                       22.6 secs



Data Movement dominates…  
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There can be many time steps … 

For each step, (2*N2)*sizeof(TYPE) 
bytes move between the host and 
the device

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.  



Solution:  Explicitly manage the device data environment

with openmp ("target enter data map(to: u, u_tmp)"):
pass

  for _ in range(nsteps):

     solve(n, alpha, dx, dt, u, u_tmp)

   # Array swap to get ready for next step
     u, u_tmp = u_tmp, u

  with openmp ("target exit data map(from: u)"):
pass

Copy data to device 
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device 
after iteration loop

28

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement:   67.6 secs
• Nvidia V100 default data movement:                  22.6 secs
• Nvidia V100 target enter/exit:                                1.2 secs

For 
PowerPoint 
clarity, we 
packed the 

finite 
difference 
code into 

the function 
solve()



PyOMP HECBench GPU results

29Details in an IWOMP’25 paper submission AMD EPYC 7763 CPU with an NVIDIA A100 GPU with 80 GB or memory. 
Python 3.9.18, Numba 0.57, llvm-lite 0.40, CUDA 12.2 with driver version 525.105.17
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PyOMP implementation: CPU



PyOMP implementation: CPU + GPU



PyOMP: a Numba extension for upgradeability and maintainability

• Depends on Numba as a compiler toolkit
– Similar to numba-cuda, numba-hip

• Uses Numba’s LLVM dependencies
– llvmlite: provides python bindings for the LLVM API (Currently supports LLVM 14.x – We may 

need to patch PyOMP when Numba moves to LLVM 18/19)

• Tested with Numba 0.57.x, 0.58.x
– Architectures: linux-64 (x86_64), osx-arm64 (mac), linux-arm64, linux-ppc64le

33

PyOMP piggybacks on the off-the-shelf Numba ecosystem.  

We don’t need to do any extra work to adapt as new versions of Numba are released
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What HPC old-timers think of Python?
(from the paper, There’s plenty of room at the top.  Leiserson et. al.  Science vol. 368, June 2020).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to 
explore the connection between 

software and performance 



What HPC old-timers think of Python
(from the paper, There’s plenty of room at the top.  Leiserson et. al.  Science vol. 368, June 2020).

for I in range(4096):
   for j in range(4096):
       for k in range (4096):
             C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel®    Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to 
explore the connection between 

software and performance 

Python performance is a joke.  
No serious HPC programmer 

would EVER use Python



Why is Python so slow?
• Python is interpreted … dynamically compiled
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Source Code
.py file

Compiler
Checks 
syntax. 

generates 
byte code

Python Virtual 
Machine (PVM):

Translate to 
machine code, 

submits for 
execute line by line

Byte Code
.pyc fle

Program Execution

Python Interpreter
CPU core

L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Core 0 Core 1

Translation Lookaside 
Buffer (TLB)*

Dual core CPU

• What if I want my Python program to run in parallel.  Does that work?
• Not really.  Python has a Global Interpreter lock (GIL).  This is a mutex (mutual 

exclusion lock) to allow only one thread at a time can make forward progress.



Primary Language used in first year, Computer Science Courses
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C C++ java Python

Comp Sci 1 languages. ... Reid List

2011 2015 2019
The Reid List tracks a large sample of North American Universities and the languages they use in teaching.

The Reid List was started by Richard Reid in the 1990s.   He has retired but others are carrying on the tradition.  The above data comes from Trends Of Commonly 
Used Programming Languages in CS1 And CS2 Learning, Robert M. Siegfried, Katherine G. Herbert-Berger,  Kees Leune, Jason P. Siegfried, The 16th International 
Conference on Computer Science & Education (ICCSE 2021) August 18-20, 2021. 

Most programmers are NOT learning 
languages that expose features of the 

hardware.

As hardware complexity increases, 
the population of people who can 
deal with that complexity is going 

down!

Survey of 409 universities in North America
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Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html.                            Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules.  Old-timers (like me) need to stop being such arrogant 
snobs and help make Python a first class HPC language

https://pypl.github.io/PYPL.html


Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload

40



In the early days of parallel computing, we were obsessed with finding 
the “right” parallel programming environment

Parallel program environments in the 90’s
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AppLeS
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bb_threads 
Blaze
BSP
BlockComm 
C*. 
"C* in C 
C** 
CarlOS
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C4
CC++ 
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
Converse
Code
COOL

CORRELATE 
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CRL
CSP
Cthreads 
CUMULVS
DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 
DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon
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FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 
GAMMA 
Glenda
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GUARD
HAsL.
Haskell 
HPC++
JAVAR.
HORUS
HPC
HPF
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JAVAR
JADE 
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM
Lilac 
Linda
JADA 
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ISETL-Linda 
ParLin
Eilean
P4-Linda
Glenda 
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
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MOSIX
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Modula-2*
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MPI
MPC++
Munin
Nano-Threads
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Nexus
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OpenMP
Orca
OOF90
P++
P3L
p4-Linda
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PADE
PADRE 
Panda 
Papers 
AFAPI.
Para++

Paradigm

Parafrase2 
Paralation 
Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP: 
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.
Polaris 
POOMA
POOL-T
PRESTO
P-RIO 
Prospero
Proteus 
QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
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SAM

pC++ 
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POET 
SDDA.
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Strand.
SUIF.
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SuperPascal 
TCGMSG.
Threads.h++.
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V 
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Visifold V-NUS 
VPE
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WinPar 
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XENOOPS  

XPC
Zounds
ZPL



Pe
rc

en
ta

ge

60

try

40

try

24 6

Language obsessions: More isn’t always better

• The Draeger Grocery Store experiment and consumer choice:
– Two Jam-displays with coupons for a discount on purchase.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the display?
– Of those who “tried”, how many bought jam?

The findings from this study show that an extensive array of options can at first seem highly 
appealing to consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006. 
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With Choice overload in mind … what did we accomplish 
with all these different options for parallel programming?



In the early days of parallel computing, we were obsessed with finding 
the “right” parallel programming environment

Parallel program environments in the 90’s
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Furthermore, engineering is a zero-sum game … time spent 
chasing the next great programming model is time NOT 

spent making the models we have actually work



The end of the crisis
• In the early 90’s, the HPC community was fed up with message 

passing chaos.  Driven largely by application developers, we created 
MPI (version 1.0 released in 1994).

• In the late 90’s, the HPC community working in the Accelerated 
Strategic Computing Initiative (ASCI) used their influence over which 
HPC systems were purchased to “force” vendor’s hands to support a 
standard for programming shared memory systems.  The result was 
OpenMP (version 1.0 released in 1997).

Portable parallel programming is important for the people who create HPC 
applications.  It took their direct involvement and dedication to create open 

standards and end parallel programming chaos.



The major parallel Programming systems in 2024 … 
well at least we have our act together in two cases. L

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI:  distributed memory systems … though it works nicely on shared memory 

computers.

– OpenMP:  Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … :  GPU programming (use CUDA if you don’t 
mind locking yourself to a single vendor … it is a really nice programming model)
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Parallel programming with Python is terribly fragmented
dispy
Delegate 
forkmap 
forkfun 
Jobibppmap
POSH
 pp 
pprocess 
processing 
PyCSP 
PyMP 
Ray 
remoteD 
torcp 
VecPy 
batchlib 
Celery 
Charm4py 
PyCUDA 
Ramba

Dask 
Deap 
disco 
dispy 
DistributedPYthon 
exec_proxy 
execnet 
iPython 
job_stream jug 
mpi4py 
NetWorkSpaces 
PaPy 
papyrus 
PyCOMPSs 
PyLinda 
pyMPI 
pypar 
multiprocessing 
PyOpenCL

pyPastSet 
pypvm 
pynpvm 
Pyro 
Ray 
Rthread
 ScientificPython.BSP 
Scientific.DistrubedComputing.MasterSlave 
Scientific.MPI 
SCOOP 
seppo 
PySpark 
Star-P 
superrpy 
torcpy 
StarCluster 
dpctl 
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

Python programmers are locked 
into the same dystopic world of 

HPC in the 90’s.

History suggests that this won’t 
get better until the python 
applications community 

demands (and dedicates 
themselves) to a minimal set of 

open, standard solutions


