
Multithreaded parallel Python through
OpenMP support in Numba

Tim Mattson (University of Bristol and Merly.ai … but mostly retired)
tim@timmattson.com

Acknowledgement: The rest of the PyOMP team ….
Giorgis Georgakoudis (LLNL), Todd Anderson (bodo.ai), and Stuart Archibald (anaconda)

This talk in one slide
• Given that …

– Tasks are NOT best for everything.

– Fragmenting the space of parallel APIs is bad.

– OpenMP is the most popular parallel programing model.

– OpenMP covers the key patterns of task parallel programming.

– One programming model mapping onto multiple programing languages is key.

– PyOMP is cool!

• Which API should applications developers converge around?

2

Warning: This talk is
part of a panel. To

foster discussion, my
views are presented
aggressively without

nuance.

API: Application Programming Interface

No single processor is best at everything
• The idea that you should move everything to the GPU makes no sense

• Heterogeneous Computing: Run sub-problems in parallel on the hardware best suited to them.

Where are Tasks running?

On a CPU

On an Accelerator

Ru
n

Ti
m

e

CPU only

Offload

Heterogeneous
Computing

Writing applications based on Heterogenous
Computing is much easier if one programming
environment covers all on-node programming

architectures AND algorithms

In the early days of parallel computing, we were obsessed with
finding the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

In the early days of parallel computing, we were obsessed with
finding the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

Having such a huge set of options did tremendous damage.

Supporting programming models is a zero-sum game. Time spent working on a
new model means time NOT spent getting established to work well.

This was a headache to application developers who need a small number of
models that just work … everywhere and supported by their systems vendors

As we came out of the 1990’s sanity ruled and the HPC applications community
converged around two programming environments …. MPI and OpenMP

The lives of HPC applications developers improved tremendously!!!!

I fear a new generation of parallel programmers have forgotten this lesson.
Can we please NOT screw things up again?

OpenMP is the
most popular

parallel
programing
model in use

today

66

Note: since we did not collect files with .cu or .cuf suffices,
we undercounted CUDA usage in HPCorpus.

Aggregate numbers over all repositories from 2013 to 2023

Quantifying OpenMP: Statistical insights into usage and adoption,
Tal Kadosh, et al., HPEC’2023, https://arxiv.org/abs/2308.08002

In a dataset (HPCorpus) of all
C/C++/Fortan github repositories
from 2013-2023, OpenMP was
found to be the most popular
parallel programming model

Top 50 OpenMP Directives/clauses for C

Indicates items from Common Core

Number of occurrences in HPCorpus (C)

OpenMP Common Core ver. 2.0?

What are people
actually using from

OpenMP

7

With the HPCorpus* dataset, we
finally have hard-data to analyze
what “should” be in the common
core.

This data was constructed by
summing up counts for different
directives and clauses across time
from 2013 to the middle of 2023.

HPCorpus … a data set created by scraping ”all” HPC
codes from github written in C, C++ and Fortran.

Quantifying OpenMP: Statistical Insights into Usage and Adoption,
Tal Kadosh, Niranjan Hasabnis, Tim Mattson, Yuval Pinter, and
Gal Oren, IEEE HPEC 2023

OpenMP components for GPUs

OpenMP SIMD components

26/50

13/50
8/50

Traditional multithreading dominates

OpenMP tasking components 4/50

Tasking is lightly used …. It doesn’t even
appear in the top-50 list until item 20.

So, I can’t be too hard on people who do not
recognize OpenMP as a tasking API.

i/edag/tree

Comparing
tasking systems*

*A taxonomy of task-based parallel programming technologies for High Performance Computing, Peter Thoman, et. al., J.. Supercomput (2018) https://doi.org/10.1007/s11227-018-2238-4

OpenMP is a general-
purpose task-based
programming model.

OpenMP supports the
full range of task-based
algorithms other than
those that depend on
• Distributed memory
• Task resiliency
• Futures

… and with Tech
Readiness level 9, it’s
suitable for serious
application work.

i/e

Free agent threads in OpenMP 6.0 supports implicit worker management
OpenMP 6.0 added reusable static taskgraphs to reduce task management overhead

Recursive tasks plus taskwait supports trees. The depend clause on task supports DAGs

OpenMP
notes Explicit GPU programming in OpenMP is fully integrated with tasks

Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html. Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules. If you only support C++,
then you exclude the overwhelming majority of programmers

Taskflow and HPX C++
OpenCilk C++, C
OpenMP C++, C, Fortran, Python

https://pypl.github.io/PYPL.html

… So perhaps best way to bring parallel task-based
computing to the masses would be to combine

OpenMP and Python?

PyOMP: Programming GPUs with OpenMP and Python
Giorgis Georgakouis, Todd A. Anderson, Stuart Archibald, Bronis de Supinski, and Timothy G. Mattson. High Performance Python for Science at Scale workshop at SC24, 2024

PyOMP: Multithreaded Parallel Programming in Python
Timothy G. Mattson, Todd A. Anderson, Giorgis Georgakoudis, Computing in Science and Engineering, IEEE, November/December 2021

Multithreaded parallel Python through OpenMP support in Numba
Todd Anderson, Timothy G. Mattson, SciPy 2021. http://conference.scipy.org/proceedings/scipy2021/tim_mattson.html

Pythonic OpenMP in three-part harmony

• Incorporated into the numba JIT compiler. The code is JIT’ed into
LLVM and therefore avoids the Global Interpreter Lock (GIL) and
supports parallel computing with multiple threads.

• Numpy is the standard module used in scientific computing with
Python. Hence, PyOMP is optimized to with numpy arrays.

• OpenMP managed through a context manager (that is, a with
statement).

JIT: Just In Time Compilation

*

*Opening chord progression from the opera Einstein on the Beach (Knee Play 1) by Philip Glass

The information on this page is subject to the use and disclosure restrictions provided on the second page to this document.

PyOMP by example …

12

We will understand PyOMP by considering the three fundamental design patterns of OpenMP (Loop
parallelism, SPMD, and divide and conquer) applied to the following problem

def piFunc(NumSteps):
 step=1.0/NumSteps
 sum = 0.0
 x = 0.5
 for i in range(NumSteps):
 x+=step
 sum += 4.0/(1.0+x*x)
 pi=step*sum
 return pi

Loop Parallelism code

13

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0

 with openmp ("parallel for private(x) reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step*sum
 return pi

pi = piFunc(100000000)

OpenMP constructs managed through an
openmp context manager.

Pass the OpenMP directive into the
OpenMP context manager as a string

Python’s implicit data management mapped onto OpenMP. Default rules:
• Variables referenced outside the OpenMP construct are shared

• Variables that only appear inside a construct are private

• Python for technical applications typically based on Numpy arrays, so PyOMP
focusses on numpy arrays as well.

OpenMP data environment clauses are supported in PyOMP

Single Program Multiple Data (SPMD)

14

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_thread_num, omp_get_num_threads
MaxTHREADS = 32
@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 partialSums = np.zeros(MaxTHREADS)
 with openmp(“parallel shared(partialSums,numThrds) private(threadID,i,x,localSum)”):
 threadID = omp_get_thread_num()
 with openmp("single"):
 numThrds = omp_get_num_threads()
 localSum = 0.0
 for i in range(threadID, NumSteps, numThrds):
 x = (i+0.5)*step
 localSum = localSum + 4.0/(1.0 + x*x)
 partialSums[threadID] = localSum
 return step*np.sum(partialSums)

pi = piFunc(100000000)

Deal out loop iterations as if a deck of cards (a cyclic distribution)
… each threads starts with the Iteration = ID, incremented by the
number of threads, until the whole “deck” is dealt out.

Divide and conquer (with explicit tasks)

15

Solve

Split

Merge

Fork threads
and launch the
computation

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0
 startTime = omp_get_wtime()
 with openmp ("parallel"):
 with openmp ("single"):
 sum = piComp(0,NumSteps,step)

 pi = step*sum
 return step*sum

pi = piFunc(100000000)

from numba import njit
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_num_threads, omp_set_num_threads
MIN_BLK = 1024*256
@njit
def piComp(Nstart, Nfinish, step):
 iblk = Nfinish-Nstart
 if(iblk<MIN_BLK):
 sum = 0.0
 for i in range(Nstart,Nfinish):
 x= (i+0.5)*step
 sum += 4.0/(1.0 + x*x)
 else:
 sum1 = 0.0
 sum2 = 0.0
 with openmp ("task shared(sum1)"):
 sum1 = piComp(Nstart, Nfinish-iblk/2,step)
 with openmp ("task shared(sum2)"):
 sum2 = piComp(Nfinish-iblk/2,Nfinish,step)
 with openmp ("taskwait"):
 sum = sum1 + sum2
 return sum

Numerical Integration results in seconds … lower is better

Intel® Xeon® E5-2699 v3 CPU with 18 cores running at 2.30 GHz.
For the C programs we used Intel® icc compiler version 19.1.3.304 as icc -qnextgen -O3 –fiopenmp
Ran each case 5 times and kept the minimum time. JIT time is not included for PyOMP (it was about 1.5 seconds)

16

Threads
PyOMP C/OpenMP

Loop SPMD Task Loop SPMD Task

1 0.447 0.450 0.453 0.444 0.448 0.445

2 0.252 0.255 0.245 0.245 0.242 0.222

4 0.160 0.164 0.146 0.149 0.149 0.131

8 0.0890 0.0890 0.0898 0.0827 0.0826 0.0720

16 0.0520 0.0503 0.0517 0.0451 0.0451 0.0431

108 steps

PyOMP DGEMM (Mat-Mul with double precision numbers)

17

from numba import njit
import numpy as np
from numba.openmp import openmp_context as openmp
from numba.openmp import omp_get_wtime

@njit(fastmath=True)
def dgemm(iterations,order):

 # allocate and initialize arrays
 A = np.zeros((order,order))
 B = np.zeros((order,order))
 C = np.zeros((order,order))

 # Assign values to A and B such that
 # the product matrix has a known value.
 for i in range(order):
 A[:,i] = float(i)
 B[:,i] = float(i)

tInit = omp_get_wtime()
 with openmp("parallel for private(j,k)"):
 for i in range(order):
 for k in range(order):
 for j in range(order):
 C[i][j] += A[i][k] * B[k][j]

 dgemmTime = omp_get_wtime() - tInit

 # Check result
 checksum = 0.0;
 for i in range(order):
 for j in range(order):
 checksum += C[i][j];
 ref_checksum = order*order*order
 ref_checksum *= 0.25*(order-1.0)*(order-1.0)
 eps=1.e-8
 if abs((checksum - ref_checksum)/ref_checksum) < eps:
 print('Solution validates')
 nflops = 2.0*order*order*order
 print('Rate (MF/s): ',1.e-6*nflops/dgemmTime)

DGEMM PyOMP vs C-OpenMP

40

30

20

10

1 2 4 8 16
Number of threads

Ave. G
FLO

PS (B
illions of floating point ops per sec)

C with OpenMP

PyOMP

Matrix Multiplication, double precision, order = 1000, with error bars (std dev)

Intel® Xeon® E5-2699 v3 CPU, 18 cores, 2.30 GHz, threads mapped to a single CPU, one thread/per core, first 16 physical cores.
Intel® icc compiler ver 19.1.3.304 (icc –std=c11 –pthread –O3 xHOST –qopenmp)

250 runs for order
1000 matrices

PyOMP times
DO NOT include
the one-time JIT

cost of ~2
seconds.

Loop Parallelism code naturally maps onto the GPU

19

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0

 with openmp (”target teams loop private(x) reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step*sum
 return pi

pi = piFunc(100000000)

OpenMP constructs managed through
the with context manager.

Map the loop onto a 1D index space … the
loop body defines the kernel function

PyOMP is easy to install and use

• Conda one-line installation
 conda install -c python-for-hpc -c conda-forge pyomp

• PyPi package installation
 pip install pyomp

• Fast ways to try
– Binder: https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
– Docker: docker pull ghcr.io/python-for-hpc/pyomp:latest

Open Source code on github: https://github.com/Python-for-HPC/PyOMP

https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://mybinder.org/v2/gh/Python-for-HPC/binder/HEAD
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP
https://github.com/Python-for-HPC/PyOMP

This talk in one slide
• Given that …
– Tasks are NOT best for everything. We need a single node-level programming

model that does it all … traditional multithreading, GPU-programming, and task
level parallelism.

– Fragmenting the space of parallel APIs is bad. HPC is facing an existential
challenge in the face of AI. If we make vendors chase multiple parallel
programming models, we in the long run damage ourselves.

– OpenMP is the most popular parallel programing model.

– OpenMP covers the key patterns of task parallel programming. We lack
futures and distributed computing, but cover the other classic task patterns.

– One programming model mapping onto multiple programing languages is
key. C++ is great, but there is a lot of code outside C++ in HPC. Python will
become the primary language of HPC!

– PyOMP is cool! The performance you expect from OpenMP but in Python

• Which API should applications developers converge around?
– OpenMP is the “once and future” choice for task-level parallelism. Taskflow, HPX and Cilk are

great research vehicles. But to impact the real world and guide us into a tasky future, OpenMP
is the right choice.

21

Hopefully these points
are clear and obvious.

And if not, I look
forward to our
discussions

API: Application Programming Interface

Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload

22

Loop Parallelism code naturally maps onto the GPU

23

from numba import njit
from numba.openmp import openmp_context as openmp

@njit
def piFunc(NumSteps):
 step = 1.0/NumSteps
 sum = 0.0

 with openmp (”target teams loop private(x) reduction(+:sum)"):
 for i in range(NumSteps):
 x = (i+0.5)*step
 sum += 4.0/(1.0 + x*x)

 pi = step*sum
 return pi

pi = piFunc(100000000)

OpenMP constructs managed through
the with context manager.

Map the loop onto a 1D index space … the
loop body defines the kernel function

5-point stencil: Heat diffusion problem

24

Loop over time steps

 for _ in range(nsteps):

 # solve over spatial domain for step t

 solve(n, alpha, dx, dt, u, u_tmp)

 # Array swap to get ready for next step

 u, u_tmp = u_tmp, u

𝜕𝑢
𝜕𝑡
− 𝛼∇!𝑢 = 0

𝜕𝑢
𝜕𝑡

≈
𝑢 𝑡 + 1, 𝑥, 𝑦 − 𝑢 𝑡, 𝑥, 𝑦

𝑑𝑡

𝜕!𝑢
𝜕𝑥!

	≈
𝑢 𝑡, 𝑥 + 1, 𝑦 − 2𝑢 𝑡, 𝑥, 𝑦 + 𝑢(𝑡, 𝑥 − 1, 𝑦)

𝑑𝑥!

5-point stencil: solve kernel

@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 # Update the 5-point stencil.
 # Using boundary conditions on the edges of the domain.
 # Boundaries are zero because the MMS solution is zero there.
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

25

25,000x25,000 grid for 10 time steps
* Xeon Platinum 8480+: 67.6 secs

Solution: parallel stencil (heat)
@njit
def solve(n, alpha, dx, dt, u, u_tmp):
 """Compute the next timestep, given the current timestep"""

 # Finite difference constant multiplier
 r = alpha * dt / (dx ** 2)
 r2 = 1 - 4 * r
 with openmp ("target loop collapse(2) map(tofrom: u, u_tmp)"):
 # Loop over the nxn grid
 for i in range(n):
 for j in range(n):
 u_tmp[j, i] = (r2 * u[j, i] +
 (u[j, i+1] if i < n-1 else 0.0) +
 (u[j, i-1] if i > 0 else 0.0) +
 (u[j+1, i] if j < n-1 else 0.0) +
 (u[j-1, i] if j > 0 else 0.0))

26

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+: 67.6 secs
• Nvidia V100: 22.6 secs

Data Movement dominates…

27

There can be many time steps …

For each step, (2*N2)*sizeof(TYPE)
bytes move between the host and
the device

• We need to keep data resident on the device between target regions
• We need a way to manage the device data environment across iterations.

Solution: Explicitly manage the device data environment

with openmp ("target enter data map(to: u, u_tmp)"):
pass

 for _ in range(nsteps):

 solve(n, alpha, dx, dt, u, u_tmp)

 # Array swap to get ready for next step
 u, u_tmp = u_tmp, u

 with openmp ("target exit data map(from: u)"):
pass

Copy data to device
before iteration loop

Change solve() routine to remove map clauses:
with openmp ("target loop collapse(2)”)

Copy data from device
after iteration loop

28

25,000x25,00 grid for 10 time steps
• Xeon Platinum 8480+ default data movement: 67.6 secs
• Nvidia V100 default data movement: 22.6 secs
• Nvidia V100 target enter/exit: 1.2 secs

For
PowerPoint
clarity, we
packed the

finite
difference
code into

the function
solve()

PyOMP HECBench GPU results

29Details in an IWOMP’25 paper submission AMD EPYC 7763 CPU with an NVIDIA A100 GPU with 80 GB or memory.
Python 3.9.18, Numba 0.57, llvm-lite 0.40, CUDA 12.2 with driver version 525.105.17

Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload

30

PyOMP implementation: CPU

PyOMP implementation: CPU + GPU

PyOMP: a Numba extension for upgradeability and maintainability

• Depends on Numba as a compiler toolkit
– Similar to numba-cuda, numba-hip

• Uses Numba’s LLVM dependencies
– llvmlite: provides python bindings for the LLVM API (Currently supports LLVM 14.x – We may

need to patch PyOMP when Numba moves to LLVM 18/19)

• Tested with Numba 0.57.x, 0.58.x
– Architectures: linux-64 (x86_64), osx-arm64 (mac), linux-arm64, linux-ppc64le

33

PyOMP piggybacks on the off-the-shelf Numba ecosystem.

We don’t need to do any extra work to adapt as new versions of Numba are released

Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload

34

What HPC old-timers think of Python?
(from the paper, There’s plenty of room at the top. Leiserson et. al. Science vol. 368, June 2020).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to
explore the connection between

software and performance

What HPC old-timers think of Python
(from the paper, There’s plenty of room at the top. Leiserson et. al. Science vol. 368, June 2020).

for I in range(4096):
 for j in range(4096):
 for k in range (4096):
 C[i][j] += A[i][k]*B[k][j]

Amazon AWS c4.8xlarge spot instance, Intel® Xeon® E5-2666 v3 CPU, 2.9 Ghz, 18 core, 60 GB RAM

They used matrix multiplication to
explore the connection between

software and performance

Python performance is a joke.
No serious HPC programmer

would EVER use Python

Why is Python so slow?
• Python is interpreted … dynamically compiled

37

Source Code
.py file

Compiler
Checks
syntax.

generates
byte code

Python Virtual
Machine (PVM):

Translate to
machine code,

submits for
execute line by line

Byte Code
.pyc fle

Program Execution

Python Interpreter
CPU core

L1 Instruction Cache L1 Data Cache

L2 Unified Cache L2 Unified Cache

Shared L3

Memory Controller

Random Access Memory

CPU core
L1 Instruction Cache L1 Data Cache

Core 0 Core 1

Translation Lookaside
Buffer (TLB)*

Dual core CPU

• What if I want my Python program to run in parallel. Does that work?
• Not really. Python has a Global Interpreter lock (GIL). This is a mutex (mutual

exclusion lock) to allow only one thread at a time can make forward progress.

Primary Language used in first year, Computer Science Courses

0

50

100

150

200

250

C C++ java Python

Comp Sci 1 languages. ... Reid List

2011 2015 2019
The Reid List tracks a large sample of North American Universities and the languages they use in teaching.

The Reid List was started by Richard Reid in the 1990s. He has retired but others are carrying on the tradition. The above data comes from Trends Of Commonly
Used Programming Languages in CS1 And CS2 Learning, Robert M. Siegfried, Katherine G. Herbert-Berger, Kees Leune, Jason P. Siegfried, The 16th International
Conference on Computer Science & Education (ICCSE 2021) August 18-20, 2021.

Most programmers are NOT learning
languages that expose features of the

hardware.

As hardware complexity increases,
the population of people who can
deal with that complexity is going

down!

Survey of 409 universities in North America

N
um

be
r o

f U
ni

ve
rs

iti
es

 e
ac

h
ye

ar

Python is number One!
Popularity of Programming Languages (PyPl)

https://pypl.github.io/PYPL.html. Vertical axis is log(PyPl score)

31.47 %

15.22%

7.65 %

7.05%

5.81%

ShareLanguage

Top 5 Languages

Programmers have spoken … Python rules. Old-timers (like me) need to stop being such arrogant
snobs and help make Python a first class HPC language

https://pypl.github.io/PYPL.html

Backup Content

• GPU Programming with PyOMP

• How is PyOMP Implemented?

• Python and the future of HPC

• Programming ecosystem fragmentation and choice overload

40

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

Pe
rc

en
ta

ge

60

try

40

try

24 6

Language obsessions: More isn’t always better

• The Draeger Grocery Store experiment and consumer choice:
– Two Jam-displays with coupons for a discount on purchase.
– 24 different Jam’s
– 6 different Jam’s

– How many stopped by to try samples at the display?
– Of those who “tried”, how many bought jam?

The findings from this study show that an extensive array of options can at first seem highly
appealing to consumers, yet can reduce their subsequent motivation to purchase the product.
Iyengar, Sheena S., & Lepper, Mark (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 76, 995-1006.

3

bu
y

30

bu
y

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

With Choice overload in mind … what did we accomplish
with all these different options for parallel programming?

In the early days of parallel computing, we were obsessed with finding
the “right” parallel programming environment

Parallel program environments in the 90’s

ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP
AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS
Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm
C*.
"C* in C
C**
CarlOS
Cashmere
C4
CC++
Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
Converse
Code
COOL

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC
DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO
Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon
Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA
GAMMA
Glenda

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS
HPC
HPF
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM
Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean
P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
Lucid
Maisie
Manifold

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++
Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW
Objective Linda
Occam
Omega
OpenMP
Orca
OOF90
P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
Papers
AFAPI.
Para++

Paradigm

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH
PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.
Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus
QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
Sage++
SCANDAL
SAM

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLE
Sina
SISAL.
distributed smalltalk
SMI.
SONiC
Split-C.
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal
TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC
V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS

XPC
Zounds
ZPL

Furthermore, engineering is a zero-sum game … time spent
chasing the next great programming model is time NOT

spent making the models we have actually work

The end of the crisis
• In the early 90’s, the HPC community was fed up with message

passing chaos. Driven largely by application developers, we created
MPI (version 1.0 released in 1994).

• In the late 90’s, the HPC community working in the Accelerated
Strategic Computing Initiative (ASCI) used their influence over which
HPC systems were purchased to “force” vendor’s hands to support a
standard for programming shared memory systems. The result was
OpenMP (version 1.0 released in 1997).

Portable parallel programming is important for the people who create HPC
applications. It took their direct involvement and dedication to create open

standards and end parallel programming chaos.

The major parallel Programming systems in 2024 …
well at least we have our act together in two cases. L

• In HPC, 3 programming environments dominate … covering the major classes of hardware.
– MPI: distributed memory systems … though it works nicely on shared memory

computers.

– OpenMP: Shared memory systems … more recently, GPGPU too.

– CUDA, OpenCL, Sycl, OpenACC, OpenMP … : GPU programming (use CUDA if you don’t
mind locking yourself to a single vendor … it is a really nice programming model)

46

Parallel programming with Python is terribly fragmented
dispy
Delegate
forkmap
forkfun
Jobibppmap
POSH
 pp
pprocess
processing
PyCSP
PyMP
Ray
remoteD
torcp
VecPy
batchlib
Celery
Charm4py
PyCUDA
Ramba

Dask
Deap
disco
dispy
DistributedPYthon
exec_proxy
execnet
iPython
job_stream jug
mpi4py
NetWorkSpaces
PaPy
papyrus
PyCOMPSs
PyLinda
pyMPI
pypar
multiprocessing
PyOpenCL

pyPastSet
pypvm
pynpvm
Pyro
Ray
Rthread
 ScientificPython.BSP
Scientific.DistrubedComputing.MasterSlave
Scientific.MPI
SCOOP
seppo
PySpark
Star-P
superrpy
torcpy
StarCluster
dpctl
arkouda
PyOMP
dpnp

Building on the list at https://wiki.python.org/moin/ParallelProcessing

Python programmers are locked
into the same dystopic world of

HPC in the 90’s.

History suggests that this won’t
get better until the python
applications community

demands (and dedicates
themselves) to a minimal set of

open, standard solutions

