
OpenCilk: A Modular and
Extensible Software Infrastructure

for Fast Task-Parallel Code
I-Ting Angelina Lee

Washington University in St. Louis

FastCode @ HPEC
September 15, 2025

int fib(int n) {
if(n < 2) { return n; }
int x, y;
cilk_scope {

x = cilk_spawn fib(n-1);
y = fib(n-2);

}
return (x + y);

}

The Cilk Language

Control cannot pass this
point until all spawned
children have returned.

The named child function
may execute in parallel with the
continuation of its parent.

These keywords denote the logical parallelism of the computation and let an underlying
scheduler automates scheduling and synchronization.

2

Cilk extends C/C++ with a small set of linguistic control constructs to support task
parallelism.

The Cilk Language, Continue
Cilk as well support parallel loops and reducers, a useful linguistic mechanism for
avoiding determinacy races [NM92,FL97] in task-parallel code.

std::ofstream outf;
cilk::ostream_reducer<char> output(outf);
void print_numbers_to_file(int n) {

outf.open("file.out");
// Write to the ostream_reducer in parallel.
cilk_for(int i = 0; i < n; ++i) {

output << i << "\n";
}
outf.close();

}
same output as

the sequential execution

reducer avoids
determinacy

race

Create an
ostream_reducer
that uses the output

file stream.

Cilk’s Performance Bound

Theorem [BL94]. A work-stealing scheduler can achieve expected running
time

TP = T1 / P + O(T∞)
on P processors.
Þ linear speedup when P ≪ T1 / T∞

Definition. TP — execution time on P processors
T1 — work T∞ — span T1 / T∞ — parallelism

In Practice. Cilk's scheduler achieves execution time
TP ≈ T1/P + T∞

on P processors.

Cilk uses a provably-efficient work-stealing scheduler to load-balance the computation.

OpenCilk
OpenCilk provides a new implementation of the Cilk language.

The OpenCilk system consists of a compiler, a runtime-system library, and a
suite of productivity tools:
• CilkSan: a determinacy race detector
• CilkScale: a scalability analyzer and benchmarking tool

Talk Today: Who Should Use OpenCilk and Why

Who Should Use OpenCilk and Why
Who should use OpenCilk:
• Educators who teaches parallelism
• Researchers who wants to experiments

with task-parallel platforms to:
• build new parallel language front end

• design and implement new runtime features
• develop tools for task-parallel code

• Application developers who wants to
write fast task-parallel code for multicore
hardware

Why OpenCilk:
• The linguistics are simple and easy to

understand.
• The runtime scheduler provides provable

execution time bounds.
• The software infrastructure is modular and

extensible.
• The overall system produces fast code.
• The system comes with a suite of

productivity tools.

OpenCilk is Modular and Extensible.

The Traditional Way of Compiling Parallel Code

Cilk
Clang

+ Cilk Plus
runtime ABI

LLVM IR -O3
CodeGen,

LinkingLLVM IR EXE

Front end

LLVM’s Intermediate
Representation

Middle-end
Optimizer Back end

Machine code
Cilk Plus/LLVM pipeline

The Compiler front end must
have built-in knowledge of the

parallel runtime ABI.

Other task-parallel systems, such as OpenMP or X10, use a similar design.

Cilk Plus
runtime library

9

int fib(int n) {
if (n < 2) return n;
int x, y;
cilk_scope {
x = cilk_spawn fib(n - 1);
y = fib(n - 2);

}
return x + y;

}

int fib(int n) {
__cilkrts_stack_frame sf;
if (n < 2) return n;
int x, y;
__cilkrts_enter_frame(&sf);
if (!__builtin_setjmp(sf.ctx))
__fib_helper(&x, n-1);

y = fib(n-2);
if (sf.flags & CILK_FRAME_UNSYNCHED)
if (!__builtin_setjmp(sf.ctx))
__cilkrts_sync(&sf);

__cilkrts_leave_frame(&sf);
return x + y;

}
void __fib_helper(int *x, int n) {
__cilkrts_stack_frame sf;
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach(&sf);
*x = fib(n);
__cilkrts_leave_helper_frame(&sf);

}

Cilk Fibonacci code
C pseudocode of LLVM IR

Create a helper
function.

The front end needs ABI-specific knowledge about runtime data types and functions.

Call runtime functions
and implement necessary
control.

Insert local
stack-frame
variables.

The OpenMP runtime ABI has
similar complexities and is larger.

Example: The Cilk Plus ABI

Clang

+ Cilk Plus
runtime ABI

Clang

+ Cilk Plus
runtime ABI

Problem: Hard to Modify Runtime ABI

Cilk LLVM IR -O3
CodeGen,

LinkingLLVM IR EXE

Cilk Plus/LLVM pipeline

Other task-parallel systems, such as OpenMP or X10, use a similar design.

Cilk Plus
runtime library

The Compiler and
runtime library must
agree about runtime

structures and functions.
• Changing runtime ABI

requires changing both the
library and the compiler.

• Extending the ABI to add
new runtime features or
support for tools requires
compiler work.

Clang

+ Cilk Plus
runtime ABI

Problem: Hard to Develop New Parallel Runtime

parallel
code LLVM IR -O3

CodeGen,
LinkingLLVM IR EXE

LLVM pipeline to support multiple parallel runtimes

Context: In LLVM 14, the Clang front end is approximately 1 million lines of
code, substantially larger than the sources for many parallel-runtime libraries.

your new
runtime library

Supporting a new parallel
runtime requires substantial

engineering effort in
compiler-front-end work

+ OpenMP
runtime ABI

+ your new
runtime ABI

The OpenCilk Architecture

Cilk
Clang
+ Tapir
support

Tapir -O3,
Momme

CodeGen,
Linking EXE

Simplified schematic of the OpenCilk system

Tapir

OpenCilk Compiler

OpenCilk Runtime

library

bitcode ABI

Tapir
Lowering

Tapir [SML17] adds three instructions to LLVM IR
that encode recursive fork-join parallelism.

The Tapir-lowering framework translates
Tapir to a parallel runtime ABI.

The front end translates
Cilk constructs into Tapir.

The Momme framework, , based on CSI
[SDDKLL17], inserts instrumentation hooks

around Tapir for productivity tools.

The runtime uses a bitcode
ABI to separate ABI details

from the compiler.

LLVM IR

Case Study:
Adding New Parallel Runtime Back-Ends
We extended OpenCilk to compile Cilk programs to different parallel runtime
systems, including Cilk Plus, OpenMP tasks, and oneTBB.

Compiler

13

Tapir

LLVM IR, OpenCilk
LLVM IR, Cilk Plus
LLVM IR, OpenMP
LLVM IR, oneTBB

Tapir
lowering

Runtime back
end

Approx.
new lines

OpenCilk 1,680
Cilk Plus 1,900
OpenMP tasks 850
oneTBB 780

…

Schematic of the Tapir-lowering framework

Each new runtime back end required fewer than 2000 new lines of code.

OpenMP

OpenCilk

Cilk Plus

oneTBB

OpenCilk bitcode ABI
OpenMP task bitcode ABI

oneTBB bitcode ABI

OpenCilk Produces Fast Code.

Performance of OpenCilk

1
5

Machine: Amazon AWS c5.metal: 48 cores across 2 sockets clocked at 3 GHz, 192 GiB DRAM

OpenCilk produces fast code.

OpenCilk’s bitcode ABI made it easy to performance-engineer the runtime system.

Be
tte

r

Comparable to the original Tapir/LLVM compiler

OpenCilk achieves high work efficiency. OpenCilk scales well on parallel processors.

Who Should Use OpenCilk and Why
Who should use OpenCilk:
• Educators who teaches parallelism
• Researchers who wants to experiments

with task-parallel platforms to:
• build new parallel language front end

• design and implement new runtime features
• develop tools for task-parallel code

• Application developers who wants to
write fast task-parallel code for multicore
hardware

Why OpenCilk:
• The linguistics are simple and easy to

understand.
• The runtime scheduler provides provable

execution time bounds.
• The software infrastructure is modular and

extensible.
• The overall system produces fast code.
• The system comes with a suite of

productivity tools.

Questions?

https://www.opencilk.org

Special thanks to the OpenCilk team —Tim Kaler, Alexandros-Stavros Iliopoulos, John Carr, Kyle
Singer, Dorothy Curtis, Bruce Hoppe, and Charles E. Leiserson — and everyone who has
contributed to and supported OpenCilk, including external contributors!

Most content based on "OpenCilk: A Modular and Extensible Software Infrastructure for Fast
Task-Parallel Code” by Tao B. Schardl and I-Ting Angelina Lee, published in PPoPP 2023.

